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Abstract: In this paper, based on Jumarie’s modified Riemann-Liouville (R-L) fractional derivative and a new
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fractional functions. In fact, our result is a generalization of classical calculus result.
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I. INTRODUCTION

Fractional calculus is a natural extension of the traditional calculus. In fact, since the beginning of the theory of
differential and integral calculus, some mathematicians have studied their ideas on the calculation of non-integer order
derivatives and integrals. During the 18th and 19th centuries, there were many famous scientists such as Euler, Laplace,
Fourier, Abel, Liouville, Grunwald, Letnikov, Riemann, Laurent, Heaviside, and some others who reported interesting
results within fractional calculus. With the development of computer technology, fractional calculus is widely used in
various fields of science and engineering, such as physics, mechanics, electrical engineering, viscoelasticity, economics,
bioengineering, and control theory [1-10].

However, the definition of fractional derivative is not unique. Commonly used definitions include Riemann-Liouville (R-
L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, conformable
fractional derivative, Jumarie’s modified R-L fractional derivative [11-15]. Since Jumarie type of R-L fractional
derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect
fractional calculus with ordinary calculus.

In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional derivative and a new multiplication of
fractional analytic functions, we can find the fractional partial derivatives of the following two types of two-variables
fractional functions:
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where 0 < a < 1, pis an integer, and s, t are real numbers. In fact, our result is a generalization of ordinary calculus
result.
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1. PRELIMINARIES
Firstly, we introduce the fractional derivative used in this paper and its properties.

Definition 2.1 ([16]): Let 0 < a < 1, and x, be a real number. The Jumarie type of Riemann-Liouville (R-L) a-fractional
derivative is defined by

x f(&)—f(xo)
(XODa)[f(x)] F(l a) dx fxo (x—i.“)“‘0 dt . (1)

where I'( ) is the gamma function. On the other hand, for any positive integer m, we define (xOD,‘})m[f(x)] =
(2,P%) (2, DF) = (1, DE)[f (x)], the m-th order a-fractional derivative of £ (x).

Proposition 2.2 ([17]): If a,B,x,, C are real numbers and § = « > 0, then

(oo D) G = x0)F] = 7P (e = x0)P 7, @

and

(xDE)IC] =0. (3)
Next, we introduce the definition of fractional analytic function.

Definition 2.3 ([18]): If x, x,, and a; are real numbers for all k, x, € (a,b), and 0 < a < 1. If the function f,:[a,b] - R

can be expressed as an « -fractional power series, i.e., f,(x%) =X Om( x — x0)k* on some open interval

containing x,, then we say that f,(x%®) is a-fractional analytic at x,. Furthermore, if f,:[a,b] = R is continuous on
closed interval [a, b] and it is a-fractional analytic at every point in open interval (a, b), then f, is called an a-fractional
analytic function on [a, b].

Next, a new multiplication of fractional analytic functions is introduced below.

Definition 2.4 ([19]): Let 0 < @« <1, and x, be a real number. If f,(x%) and g,(x*) are two a-fractional analytic
functions defined on an interval containing x; ,

fulx®) = Bt (v = x)™, @
Ja(x¥) = Zf:oﬁ (x — xo)™ . (5)

Then we define
fa(x®)®g go(x)
b.

R 1= an _ na o n _ na
= Y=o T(na+1) (x = x0)" ¢y Xn=o T(na+1) (x — x)

= 20 mmers (Znmo () nombm) G = x0)"™ (6)

Equivalently,
fa(x*)®q go ()

®qn

= Zn=o in (F(a+1) (- xO)a) ®a L= (r(a+1)( —%0)” )

n
= Zn 0 ( m=0 (m) an—mbm) (F(a+1)( - xo) ) . (7)
Definition 2.5 ([20]): If 0 < a < 1,and f,(x%), g,(x%) are two a-fractional analytic functions defined on an interval
containing x, ,

1 Qqn
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The compositions of f, (x%) and g, (x%) are defined by

®an

(fu © 9o) D) = fu(92(xD) = Ti=o (92 (x)) (10)

and

®,1n

(9 © fe) () = ga(fa(x9) = Zno ~ (fa(x9) (11)

Definition 2.6 ([21]): Let0 < a <1, and f,(x%), g, (x%) be two a-fractional analytic functions. Then (fa(x“))®"‘” =

fo(xM)Qy Oy fo(x%) is called the nth power of f,(x*). On the other hand, if f,(x*)®, go(x*) = 1, then g, (x*) is

called the ®,, reciprocal of f,(x%), and is denoted by (fa(x"‘))@“_l.

Definition 2.7 ([22]): If 0 < « < 1, and x is a real variable. The a-fractional exponential function is defined by

xna Qun
a p— p— 1 @
Eo(x%) = Xnz 0F(na+1) Xn=o (F(zx+1)x ) : (12)

On the other hand, the a-fractional cosine and sine function are defined as follows:

(-1)"x2na (- 1 @ ®Rq2n
[(2na+1) = Y=o 2n)! (F(a+1)x ) ! (13)

cosg(x*) = Y=o

and

_1\Ny@n+)a _1\n ®q (2n+1)
(-1)"x R o 1-) (-1) ( 1 x(x) @ .

, @ _ v _
Sing (x%) = Xnzo r(en+Da+1) n=0 2n+1)! \I'(a+1) (14)

Definition 2.8: If the complex number z = p + iq, where p, q are real numbers, and i = v—1. p, the real part of z, is
denoted by Re(z); q the imaginary part of z, is denoted by Im(z).

Notation 2.9: If r is any real number, p is any positive integer. Define (r), =r(r—1)---(r —p + 1), and (r)g =1.

Definition 2.10: Let m,n be non-negative integers. For the two-variables fractional function f,(x%,y%), its m-times
fractional partial derivative with respect to x%, n-times fractional partial derivative with respect to y*, forms a m + n-th

order fractional partial derivative, and denoted by (yng)n(xoD,?)m[fa(x“,y“)].
Proposition 2.11 (fractional Euler’s formula): Let 0 < a < 1, then
E,(ix*) = c0s,(x*) + ising(x*) . (15)
Proposition 2.12 (fractional DeMoivre’s formula): Let 0 < @ < 1, and k be a positive integer, then
[cos, (x%) + ising (x*)]®ak = cos, (kx%) + isin, (kx%). (16)
I11. MAIN RESULTS

In this section, we obtain fractional partial derivatives of two types of two-variables fractional functions. At first, a lemma
is needed.

Lemma3.1: If 0 < @ < 1, and p is any integer, x, y, s, t are real numbers and tﬁy“ # 0. Then

3 ®ap
[s x*+i y“]
I'(a+1) I'(a+1)
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— a (04
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x® Bel 17
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(where
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a?

Theorem 3.2: Let 0 < @ < 1, m, n be non-negative integers, p be an integer, and s, t be real numbers, then the m + n-th
order a-fractional partial derivative of the a-fractional function

®)
1 B 2 1 Ba 2 1
fa (%, y%) = (sz [r(a+1)xa] +t? [F(a+1) ya] ) QO Eq [S F(a+1) ] ®q C0Sq I r(a+1)ya T
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(yODLg)n(XODJ‘?)m [f(x(xa' )’“)]

1 ®q (-1)
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» 1 18D
—s™Mt"sin T8 Zk —0% (k+p)m+nsma (k+p—m—n)-arccot, St +1) x*Q, [ rarn” ] . (18)

Proof: By Lemma 3.1, we have

®aP
1 a 1 «1%¢ 1 a .y 1 e
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Therefore,
(x%,y9) = Re [ @yt a]W’@E[ 1 a ‘]
fa(x%,y%) = Re Sr(a+1)x ' F(a+1)y a~a SF(a+1)x F(a+1)y
_ o 1 1 a a ®q (k+p)
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Da n Da m a a
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Theorem 3.3: If the assumptions are the same as Theorem 3.1, then the m + n-th order a-fractional partial derivative of

the a-fractional function
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Proof : Since

®ap
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It follows that
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® (k+p—m—n) N
S 1 g1®a?) b 2 g lick 1 4 1 4]®e D
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.om w 1 1 1 B (_1)__
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Qa (-1)
—_ —_ . 1 a L a *
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mm 1 .
+s™t"cos —= - Lo o (K + D)mansing

g.e.d.
IV. CONCLUSION

In this paper, the fractional partial derivatives of two types of two-variables fractional functions are obtained based
Jumarie’s modified R-L fractional derivative and a new multiplication of fractional analytic functions. In fact, our result is
a generalization of traditional calculus result. In the future, we will continue to study the problems in applied mathematics

and fractional differential equations.
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